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This paper explores the mathematical models of the aerodynamics of wind turbines, focusing on
wind drag and power production. The first theory, Actuator Disk Theory, provides a metric for
studying wind turbine performance as well as an upper-limit for power production, known as the
Betz Limit. The second theory, Blade Element Theory, utilizes airfoil theory to describe the lift and
drag on the turbine blades. Together, these two models describe the Blade Element Momentum
Theory, a powerful computational tool for the designing and testing of wind turbines.

Wind turbines have been in use since the tenth cen-
tury [1], however the mathematical models describing
their energy conversion were only formulated in the past
century. In an effort to improve wind turbine efficiency,
present research builds off of the original mathematical
formulations of the nineteenth century. Current research
includes improving theoretical concepts such as limits of
power efficiency [2–5], computational models [6–9], and
environmental effects of wind turbine farms [10–12]. The
goal of this paper is to introduce the models that mo-
tivate the current research in wind energy and turbine
design, as well describe the Blade Element Momentum
Theory, a powerful tool for designing wind turbines.

The first model for understanding wind turbine aero-
dynamics and power output were formulated by Rankine
and Froude [13–15] in their studies of propeller thrust
dynamics. While Rankine and Froude’s Actuator Disk
Theory (also known as the axial momentum theory) was
initially formulated for propellers, the observation that
wind turbine dynamics share similar characteristics lends
to a similar analysis for turbines. We notice that pro-
pellers outputs a fluid thrust (air or water) with an input
of power through some fuel source (electricity or gaso-
line). Turbines function in the exact reverse: propellers
output power in the form of electricity, and a thrust in
the form of air drag acts against the turbine. With this
simple comparison, we see that there is strong motivation
to use the methods and theory of Rankine and Froude to
initially analyze wind turbines.

The first simplification in the the Actuator Disk The-
ory is to extract out the details of the physical wind tur-
bine and replace it with an actuator disk which serves
as a semi-permeable disk which converts the wind en-
ergy into mechanical energy. In addition, we make the
following initial assumptions: (1) the disk is frictionless;
(2) there is no rotational velocity in the wake; (3) flow is
stationary, incompressible, and frictionless; and (4) there
are no external forces acting on the fluid up or down-
stream of the turbine. While these assumptions oversim-
plify certain regimes and dynamics, they provide us with
an ideal model for the turbine, and we will revisit these
assumptions with later corrections and modifications to
this model.

The main strategy in modeling the turbine in the Actu-
ator Disk Theory is to focus on the pressure and velocity
drops that occur at the turbine. In order to do so, we

introduce three different regions in the airflow: upstream
with a velocity u∞ and pressure p∞, disk or turbine with
velocity and pressure ud and pd, and downstream, behind
the turbine in its wake, uw and pw. As shown in Figure
1, there is a sharp pressure drop across the wind turbine
due to the decrease in wake area as well as a decrease
in wind speed due to the loss of kinetic energy that is
transferred to harnessed electrical energy.

FIG. 1. Wind turbine modeled as actuator disk in Axial Mo-
mentum Theory. (Top) The flow profile for the upstream and
downstream flow. The area of the streamlines are increased
behind the disk. (Middle) Pressure distribution of the fluid,
with a sharp decrease across the wind turbine. (Bottom) Ve-
locity distribution for the fluid, varying from u∞ upstream
to ud at the turbine/disk and finally uw in the downstream
wake. [16]

We begin our analysis by formulating an expression
for drag in terms of pressure, Tp = ∆pA where ∆p =
p+
d − p

−
d is the drop in pressure over the disk and Ad is

the area of the disk or the swept area in the case of a wind
turbine. In this paper, T is chosen to represent the drag
force to stay consistent with propeller notation, where the
pressure drop over the propeller causes a thrust force in
the opposite direction of the flow. The first challenge is to
calculate this unknown pressure drop across the disk. In
order to calculate the pressure drop we turn to Bernoulli’s
equation, describing the pressure distribution of the fluid
between two points:

p+
1

2
ρu2 = constant (1)
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where scalar notation is used instead of vector notation
since we assume the flow is one-directional, in the direc-
tion of the turbine axis.

Applying (1) to both the upstream and downstream
portion of the wind flow and equating both sides we
obtain an expression for the drop in pressure in terms
of u∞ and uw, ∆p = 1

2ρ(u2
∞ − u2

w). Substituting this
equation into our expression for pressure drag, we ob-
tain our first expression for the drag force on the disk:
Tp = 1

2ρ(u2
∞−u2

w)Ad. The second formulation is derived
from the axial momentum theorem, Tm = ṁ∆u, where
ṁ is the mass rate. Applying the axial momentum the-
orem to the disk, we can obtain a thrust in terms of air
speed: Tm = ρAdud(u∞ − uw).

Equating the two expressions for drag, Tp and Tm, we
arrive at the interesting result that the air speed at the
disk is the average of the wind speed and wake speed:

ud =
1

2
(u∞ + uw) (2)

Using the first law of thermodynamics, one can show
that the total power extracted is [17]:

P =
1

2
ṁ(u2

w − u2
∞) =

1

2
ρAdud(u

2
w − u2

∞) (3)

In order to characterize the performance of a given
wind turbine, we define performance constants calculated
as ratios between actual force and total possible drag,
and likewise, the ratio between the actual power output
and total possible power output. Here we define the total
possible force and power output as the force and power
at the inlet, u∞. We choose the inlet since we know ve-
locity is maximum there, and so too force and drag will
be maximized. Thus, we define our drag and power per-
formance coefficients as Cd = D

1
2ρu

2
∞Ad

and Cp = P
1
2ρu

3
∞Ad

respectively.
Before proceeding, it is helpful to introduce a term

to quantify the reduction in air speed due to the inter-
action with the turbine/disk. The induction factor (or
retardation factor), a, computes the ratio between the
speed at the disk and the speed at the inlet, u∞ as [18]:
a = 1 − ud

u∞
. Notice that for a = 1, the air is at rest at

the turbine, and for a = 0 the air speed is not effected
by the turbine. Using these factors, we seek to derive
the theoretical limit for power performance by express-
ing our performance coefficients in terms of a, obtaining:
Cp = 4a(1− a)2 and Cd = 4a(1− a). By taking the first
derivative of the power coefficient, Cp with respect to a,
we can determine the maximum power possible by any

turbine,
dCp

da |a=amax
= 4(1− amax)(1− 3amax) = 0.

As shown in Figure 2, there will be a maximum Cp
corresponding to an induction factor amax. Solving for
amax we obtain the optimization result that the optimal
power output occurs at amax = 1

3 . At this axial induction
factor, the maximum power coefficient is

Cp,max = 4amax(1− amax)2 =
16

27
= 0.593 (4)

FIG. 2. Performance coefficients and Betz limit. Cp (red) and
Cd (blue) graphed as a function of axial induction factor, a.
The local maximum of Cp is marked, known as the Betz limit
(amax), for power performance of wind turbines.

This result, initially presented by Betz (1926) [19], pro-
vides an upper limit to the possible power coefficient
for any wind turbine design. Following Betz, other re-
searchers have refined this limit to match turbine data
[3] and modern turbines today can achieve performance
coefficients of approximately 0.5 [20].

Before concluding our discussion of the Actuator Disk
Theory, we revisit the assumption that the flow is irro-
tational. While the air flow is irrotational in the up-
stream region, the interaction of the rotating blades will
cause the air to rotate once it passes the turbine, creat-
ing a rotating wake. To quantify this rotation, we intro-
duce a rotational induction factor, a′ that characterizes
the rotational speed of the air relative to the rotational
speed of the turbine blades: a′ = ω

2Ω where ω is the
wake’s rotational velocity and Ω is the turbine’s rota-
tional velocity. Like with the previous axial induction
factor, the rotational induction factor describes the in-
crease in rotational velocity due to the turbine. With this
new contribution to both momentum and kinetic energy,
we recalculate the forces and power due to the rotation
of the turbine. We first recall Euler’s Turbine equation
which calculates power as a function of torque and rota-
tional velocity instead of force and translational velocity
P = MzΩ = Ωṁ(r1Cθ,1 − r2Cθ,2) [17], ṁ is the mass
rate of the air, r is the radius of the streamtube, and
Cθ is the azimuthal velocity of the flow. Applying this
to to an infinitesimal control volume of thickness dr we
obtain: dP = ṁΩrCθ = 2πr2ρudΩCθdr [17]. Since the
rotational velocity in the wake (rCθ) contains rotational
energy that was not extracted by the turbine, we want to
minimize Cθ. Thus for a given power output, maximizing
the angular velocity of the wind turbine will minimize the
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energy loss due to wake rotation. Rewriting the power
expression in terms of a and a′ and integrating we ob-

tain the new expression: P = 4πρΩ2u2
∞

∫ R
0
a′(1−a)r3dr.

The power coefficient equation can then be written as

Cp = 8
λ2

∫ λ
0

(1− a)a′x3dx where λ = ΩR
u∞

is the tip speed

ratio and x = Ωr
u∞

is the ratio between local rotational
speed and the wind speed.

While the Actuator Disk Theory provides a useful
modeling of the global conversion of wind speed and pres-
sure gradients into power, including useful theoretical
limits such as the Betz limit, the Actuator Disk Theory
does not quite capture the entire mechanisms of wind tur-
bine aerodynamics. Firstly, Actuator Disk Theory treats
the wind turbine as a “Black Box” in its analysis. The
physical description of the blade is not included in this
model, nor are the physics of the blade included in the
derivation. Secondly, this analysis does not comment on
how to determine the axial induction factors without ob-
serving the flow velocity at the blade (ud and ω), quanti-
ties that are not easily determined. Finally, and perhaps
most importantly, Glauert showed empirically that this
model fails to describe turbines with larger turbulent be-
haviors and axial induction factors. As shown in Figure
3, Glauert found that after a = 0.5, the thrust coefficient
diverges from the Actuator Disk Theory.

FIG. 3. Experimental data for drag coefficient as a function of
axial induction factor. For dynamics with lower induction fac-
tors (propellers, windmills) Momentum/Actuator Disk The-
ory matches empirical results. For more turbulent conditions
(a > 0.5), empirical data no longer matches the predicted
theoretical values [21].

With the need for an alternative (and hopefully com-
plementary) model of turbine dynamics, we focus on the
blade itself in Blade Element Theory. Classic airfoil the-
ory states that when a stream of fluid flows past an airfoil,
two forces arise due to the pressure field created: a lift
force and drag force. The lift force is perpendicular to
the direction of the flow and drag force is parallel the
flow. These forces arise from the varying pressure field
around the airfoil as the fluid is deflected around the wing
[17]. These forces can be shown to be functions of the

geometry of the foil and the flow of the fluid:

L =
1

2
clρu

2c (5)

D =
1

2
cdρu

2c (6)

where cl and cd are foil specific parameters called the lift
and drag coefficients, u is the fluid’s velocity, ρ is the
density of fluid, and c is the chord length (the chord line
connects opposite ends of the wing) as seen in Figure 4b.

FIG. 4. Blade element diagram showing forces and flow an-
gles. (a) Cross section of blade shows classic airfoil profile (b)
Lift force perpendicular to flow and drag force parallel to flow.
Decomposed into components normal, pN and tangential, pT ,
to the rotor plane. (c) Flow angles due to turbine pitch and
azimuthal and axial flow contributions. Relative wind angle
ϕ shown to the sum of α and β.

In the case of turbine blades, air is not flowing directly
parallel to the airfoil’s chord line and thus we introduce
a parameter α, or the angle of attack, of the blade. The
angle of attack is important because the performance co-
efficients depend on the angle of attack and the Reynolds
Number = uc

γ . For small angles of attack, the lift coeffi-

cient increases proportionally to the angle of attack, at a
slope of roughly 2π (Figure 5a) and the drag coefficient is
roughly constant (Figure 5b). At a certain angle, Cl be-
gins to drop dramatically in what is know as stalling [17],
introducing higher drag effects and lower power produc-
tion. Due to its influence of drag coefficients and stalling,
angle of attack is the main parameter of interest in Blade
Element Theory and thus an expression for this angle is
of great importance.

In wind turbines, this angle of attack has two main con-
tributions, pitch angle β and relative wind angle ϕ. The
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FIG. 5. Experimental data for lift and drag coefficients at
various Reynold’s Numbers. For small angles, lift coefficient
varies linearly with angle and drag is constant. At the stall
angle (dotted line), a sharp increase in drag and decrease in
lift is observed. [22]

pitch angle measures the angle between the chord line
and rotor plane and the relative wind angle measures the
angle between the relative wind velocity (u). From Fig-
ure 4b, we see that there is a simple relationship between
these three angles: α = ϕ − β. The relative wind an-
gle, ϕ, appears in our figure due to air flow coming from
two directions relative to the turbine: an axial term that
is purely from the wind (ud = u∞(1 − a)) and an az-
imuthal term due to the rotation of the turbine blades
(Cθ = Ω(1 + a′)). From the geometry of these two air
velocity contributions as seen in Figure 4b, an expression
for the relative wind angle can be found as:

tanϕ =
ud
Cθ

=
(1− a)u∞
(1 + a′)Ωr

(7)

where ud is the axial wind velocity at the turbine, Cθ
is the azimuthal component of the wake velocity, u∞ is
the upwind air speed, and Ω is the angular velocity of
the turbine. Note that ϕ is a function of r, thus as one
moves farther down the wing, ϕ decreases. With this
equation, we can calculate the angle of attack α purely
from the wind speed and rotation of the blade, as well as
the induction factors.

While we have obtained the blade’s lift and drag forces,
only components of these forces will be in the tangential
direction (causing the drag thrust) and the normal direc-
tion (producing the torque for power output). However,
using the geometry of the flow and wing, we can decom-
pose the lift and drag forces into components normal and
tangential to the rotor plane:

pT = L cosϕ+D sinϕ (8)

pN = L sinϕ−D cosϕ (9)

where L and D are the lift and drag forces calculated
using equations (5) and (6). Since pT and pN are forces
per length of the turbine, we integrate (8) and (9) along
the blade to obtain the total drag force and torque, T =

FIG. 6. Annulus of air with thickness dr analyzed in Blade El-
ement Momentum Theory. Pressure and velocity loss through
annulus can be analyzed using Actuator Disk Theory. Lift
and drag calculated from the flow over blade section using
Blade Element Theory. [23]

∫
BpNdr and M =

∫
rBpT dr where B is the number of

blades on the turbine.
In both Actuator Disk Theory and Blade Element The-

ory, our ability to calculate drag and power is dependent
on our ability to measure the axial induction factors, a
and a′. Thus the next step is to look for a computa-
tional method to determine a and a′, allowing us to fully
describe the dynamics of any turbine design. Blade Ele-
ment Momentum Theory provides a solution by combin-
ing both aerodynamic theories to formulate expressions
for the induction factors. In this model, we analyze an
annulus of air as it flows past a section of the blade as
shown in Figure 6, with the assumption that the forces
and torques on each individual annulus is radially inde-
pendent and that the forces are constant along the an-
nulus (corresponding to a turbine with infinite blades).
By equating the results from both previous theories, we
arrive at an expression for the induction factors:

a =
1

4 sin2 α
σCn

+ 1
(10)

a′ =
1

4 sinα cosα
σCt

− 1
(11)

where σ is the blade solidity or fraction of annular area
covered by the blades, and Cn and Ct are the dimension-
less forms of pN and pT . With these factors, we can now
calculate the total drag and power generated by summing
each blade element’s contribution. Since a and a′ can be
found iteratively using (7), (10), and (11), this method
is computationally inexpensive and thus used by many
engineers to design and test wind turbines.

In summary, we have presented two models for calcu-
lating the power production and drag force. Actuator
Disk Theory motivates the introduction of induction fac-
tors to describe the performance of ideal wind turbines
and deduce theoretical limits to the power production.
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The Blade Element Theory provides a description of the
forces in terms of blade geometry and airfoil coefficients.
Finally, Blade Element Theory combines both the blade
specific dynamics of Blade Element Theory and the flow
velocities of Actuator Disk Theory to provide a useful
method for calculating the drag and power of a specific
turbine design. Future work will concentrate on com-

putational and experimental methods such as computa-
tional fluid dynamics and wind tunnel experimentation,
which can be used to verify our theoretical models and
provvie further insight on the dynamics of wind turbines.

The author would like to thank my professor, P.-T.
Brun for his input on this paper and topic, and the stu-
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